Claudin 11 stops the leaks

نویسنده

  • Caitlin Sedwick
چکیده

Devaux and Gow demonstrate how a tight junction protein called claudin 11 makes the neuronal myelin sheath a snug fi t. Like the rubber coating on a copper wire, the myelin sheath—a membrane extension of glial cells that spirals around the axons of neurons—creates an insulation layer that prevents current leakage from axons and aids electrical conduction along the length of the axon. Claudin 11 forms tight junctions between successive spiral layers of the myelin sheath, but it was unknown whether it was required for myelin to act as a good insulator. To examine this question, Devaux and Gow compared electrical recordings from the optic nerve of wild-type and claudin 11 knockout mice. They found that although claudin 11 defi ciency caused no gross defects in the appearance of the myelin sheath, it slowed electrical signals—at least in neurons with small-diameter axons. Using a computer model that incorporates the resistive and capacitive properties of axons (and their myelin sheaths), the authors showed that claudin 11 adds to the electrical resistance of myelin by preventing leakage of charged ions (and electrical current) through the spiral space between myelin layers. The reduced resistance in the absence of claudin 11 affects small-diameter axons most severely because such axons have thinner myelin sheaths and thus less insulation to begin with. Because neurons with small-diameter axons are mostly found in the CNS, the authors speculate that defects in claudin 11 could be associated with defi cits in cognition and perception, like those found in schizophrenia or neurodegenerative diseases. A study by Narendra et al. suggests that Parkin, the product of the Parkinson's disease-related gene Park2, prompts neuronal survival by clearing the cell of its damaged mitochondria. Loss-of-function mutations in the gene Park2, which encodes an E3 ubiquitin ligase (Parkin), are implicated in half the cases of recessive familial early-onset Parkinson's disease. Several lines of evidence suggest that Parkin loss is associated with mitochondrial dysfunction, but exactly how was unknown. To learn more about Parkin's role in cells, Narendra et al. examined the protein's subcellular location. They found that Parkin was present in the cytoplasm of most cells, but translocated to mitochondria in cells that had undergone mitochondrial damage such as membrane depolarization. Damaged mitochondria can trigger cell death pathways; indeed, dysregulation of mitochondrial health was already thought to be a possible cause of the neuronal cell death associated with Parkinson's disease. The relocation of Parkin …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis

In this study we tested expression of tight junction proteins in human, mouse and rat and analyzed the localization of claudin-11 in testis of patients with normal and impaired spermatogenesis. Recent concepts generated in mice suggest that the stage-specifically expressed claudin-3 acts as a basal barrier, sealing the seminiferous epithelium during migration of spermatocytes. Corresponding mec...

متن کامل

The distinct expression patterns of claudin-2, -6, and −11 between human gastric neoplasms and adjacent non-neoplastic tissues

BACKGROUND Cancers have a multifactorial etiology a part of which is genetic. Recent data indicate that expression of the tight junction claudin proteins is involved in the etiology and progression of cancer. METHODS To explore the correlations of the tight junction proteins claudin-2,-6, and -11 in the pathogenesis and clinical behavior of gastric cancer, 40 gastric cancer tissues and 28 sam...

متن کامل

Claudin-11/OSP-based Tight Junctions of Myelin Sheaths in Brain and Sertoli Cells in Testis

Members of the newly identified claudin gene family constitute tight junction (TJ) strands, which play a pivotal role in compartmentalization in multicellular organisms. We identified oligodendrocyte-specific protein (OSP) as claudin-11, a new claudin family member, due to its sequence similarity to claudins as well as its ability to form TJ strands in transfected fibroblasts. Claudin-11/OSP mR...

متن کامل

Androgens and postmeiotic germ cells regulate claudin-11 expression in rat Sertoli cells.

In the present study we investigated whether fetal exposure to flutamide affected messenger and protein levels of claudin-11, a key Sertoli cell factor in the establishment of the hemotesticular barrier, at the time of two key events of postnatal testis development: 1) before puberty (postnatal d 14) during the establishment of the hemotesticular barrier, and 2) at the adult age (postnatal d 90...

متن کامل

Osp/Claudin-11 Forms a Complex with a Novel Member of the Tetraspanin Super Family and β1 Integrin and Regulates Proliferation and Migration of Oligodendrocytes

Oligodendrocyte-specific protein (OSP)/claudin-11 is a major component of central nervous system myelin and forms tight junctions (TJs) within myelin sheaths. TJs are essential for forming a paracellular barrier and have been implicated in the regulation of growth and differentiation via signal transduction pathways. We have identified an OSP/claudin-11-associated protein (OAP)1, using a yeast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2008